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Figure 1. We introduce ObjectForesight, a framework for predicting future 3D object trajectories from a video context of past motion.
We first estimate the object’s 3D shape and initial pose, and then predicts its future 6D poses over time. There are three key contributions:
(1) introducing and formalizing the task of 3D object dynamics prediction from human videos, (2) a 3D object-centric dynamics model
for future prediction of 6-DoF trajectories, (3) a large-scale dataset of 2 million+ object-centric 3D trajectories with pseudo-groundtruth.
Video results are in the website objectforesight.github.io

Abstract

Humans can effortlessly anticipate how objects might move
or change through interaction—imagining a cup being
lifted, a knife slicing, or a lid being closed. We aim to en-
dow computational systems with a similar ability to pre-
dict plausible future object motions directly from passive
visual observation. We introduce ObjectForesight, a 3D
object-centric dynamics model that predicts future 6-DoF
poses and trajectories of rigid objects from short egocen-
tric video sequences. Unlike conventional world/dynamics
models that operate in pixel or latent space, ObjectFore-
sight represents the world explicitly in 3D at the object level,
enabling geometrically grounded and temporally coherent
predictions that capture object affordances and trajectories.
To train such a model at scale, we leverage recent advances
in segmentation, mesh reconstruction, and 3D pose esti-
mation to curate a dataset of 2 million+ short clips with
pseudo-ground-truth 3D object trajectories. Through ex-
tensive experiments, we show that ObjectForesight achieves
significant gains in accuracy, geometric consistency, and
generalization to unseen objects and scenes—establishing
a scalable framework for learning physically grounded,
object-centric dynamics models directly from observation.
objectforesight.github.io

1. Introduction

Humans possess an intuitive understanding of how the
world around them can change through interaction. When
we see a cup on a table, we can effortlessly imagine it be-
ing picked up, tilted, or placed elsewhere. Watching a hand
reach toward a knife, we can anticipate the knife’s motion
and the transformation of the objects it touches. Such in-
ferences go beyond recognizing what is — they reflect our
ability to imagine what can be. This capacity to mentally
simulate object interactions is central to intelligent behav-
ior, allowing us to plan, predict, and act effectively in the
physical world.

Our goal in this work is to endow computational sys-
tems with a similar capability: to infer and predict plausible
future configurations of objects from passive visual obser-
vation. We focus on the problem of predicting 3D object
dynamics — learning how objects can move and interact
in 3D space as a result of human actions, without directly
modeling the human motion itself. Rather than learning ex-
plicit manipulation trajectories or low-level control policies,
we seek to model their effects: the diverse, physically coher-
ent object motions that arise from everyday interactions.

To this end, we present ObjectForesight, a 3D object-
centric forward dynamics model that learns to predict future
6-DoF trajectories of rigid objects from egocentric human
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videos. Given a sequence of RGB frames and an object
mesh, ObjectForesight predicts a temporally coherent se-
quence of future object poses — effectively imagining how
the object may move in the near future (Fig. 1). Operating
in object-centric coordinates allows the model to general-
ize across varied objects, scenes, and manipulation styles,
capturing the underlying semantics of object affordances.

For training ObjectForesight, a key challenge is data:
There are no large-scale, clean, and physically grounded 3D
interaction datasets. Existing robot datasets capture limited,
scripted manipulations with explicit action supervision [32],
while internet-scale human video corpora on their own,
though rich and diverse, lack aligned 3D information such
as object poses, camera geometry, or depth [15, 38]. To ad-
dress this, we develop a scalable data curation pipeline that
transforms passive human videos into structured 3D motion
supervision. Specifically, we extract 2 million short clips
(2–3 seconds each) from the EPIC-Kitchens dataset [9], au-
tomatically detecting hands [47] and identifying objects in
contact using SAM [35]. We then recover 3D object meshes
and poses with TRELLIS [43], and estimate camera motion
and monocular depth using SpaTrackerv2 [45]. By express-
ing object poses relative to the first-frame camera coordi-
nates, we effectively disentangle ego-motion from object
motion. This process converts ordinary egocentric videos
into a large-scale dataset of 3D object trajectories — the
first at this level of scale, fidelity, and semantic diversity.

ObjectForesight integrates a Diffusion Transformer
(DiT) [33] with a geometry-aware 3D point encoder, Point-
TransformerV3 [42], to jointly reason about object motion
and surrounding scene context. Given a short history of
RGB frames with corresponding monocular depth maps and
a mask of the object in the anchor frame, the model en-
codes the local 3D geometry of the scene and the object’s
recent motion into a unified representation. Conditioned on
this visual and spatial context, ObjectForesight predicts a
distribution over future 6-DoF object poses through a de-
noising diffusion process. This formulation enables robust,
multi-modal prediction of dynamically feasible and physi-
cally consistent object motions, maintaining geometric fi-
delity and temporal coherence across predicted trajectories.

In summary, we introduce the task of predicting future
3D object dynamics from videos — a core capability for
embodied visual reasoning, and build models and datasets
towards this task. Our key contributions are as follows:
• We introduce and formalize the task of 3D object dynam-

ics prediction from human videos, establishing a stan-
dardized setting for learning how objects move in the real
world. This formulation enables models to leverage the
vast amount of in-the-wild egocentric video data to learn
physical interaction priors without requiring explicit ac-
tion supervision.

• We propose ObjectForesight, a 3D object-centric dy-

namics model that predicts future 6-DoF trajectories of
objects from short egocentric video snippets and monoc-
ular geometry.

• We construct a large-scale dataset of object-centric 3D
trajectories from 2 million EPIC-Kitchens clips, using au-
tomatic object segmentation and pose estimation to re-
cover high-quality 3D motion supervision from generic
interaction videos.
Across extensive experiments in daily human activi-

ties, ObjectForesight produces accurate, stable, and phys-
ically coherent 6-DoF trajectories in diverse real-world
scenes. The diffusion-based formulation outperforms au-
toregressive models and video-generation approaches, of-
fering sharper long-horizon consistency and better multi-
modal prediction. These results show that large-scale ob-
servational data, combined with explicit 3D reasoning, pro-
vides a strong foundation for reliable and scalable object-
centric motion forecasting.

2. Related Works
Extracting Representations from Human Videos.
Large-scale egocentric datasets such as Something-
Something [15], YouCook [10], EPIC-Kitchens [9],
EGTEA [27], and Ego4D [16] have enabled learning rich
representations of human–object interactions directly from
video. Early work focused on recovering 3D hand and
object poses [13, 19, 22, 37, 50] and reconstructing object
geometry [20, 21, 24, 44], providing geometric supervision
for understanding interaction. Advances in tracking and
scene flow [12, 18, 23, 45] further enable dense motion
estimation across time, while recent segmentation and
reconstruction systems such as SAM [35], TRELLIS [43],
and very recently SAM3D [8] make it possible to automat-
ically extract 3D trajectories of objects from in-the-wild
images and videos. Our work is closely related in that
it leverages these advances to curate a dataset of object-
centric 3D trajectories at scale, transforming ordinary
human videos into a resource for training predictive models
of object dynamics. By building upon existing 3D pose
estimation and reconstruction pipelines, we focus not on
estimating geometry itself, but on learning how objects
move and interact over time.
Predicting Manipulation Cues from Human Videos. An-
other line of research focuses on predicting or reason-
ing about manipulation cues and affordances from human
videos. Classical works in affordance learning [5, 14, 28–
31] study how objects are grasped, where contact occurs,
how hands move in the future [3, 7, 28] or which parts
of an object afford specific actions. More recent ap-
proaches [4, 11, 38] learn to anticipate manipulation out-
comes or future contact regions, connecting perception to
physical reasoning. Such methods primarily operate in
2D or intermediate feature space, forecasting human or
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object-centric cues that signal future interactions. Our work
shares the goal of extracting predictive signals from human
videos but differs in focus. Rather than predicting con-
tact maps or categorical actions, we aim to learn a continu-
ous model of 3D object dynamics—how objects themselves
move in space as a result of human interactions. By ground-
ing prediction in SE(3) pose space and explicit geometry,
we extend affordance learning toward physically coherent,
object-centric reasoning about future motion.
World Models and Trajectory Representations. Build-
ing models of how the world evolves in response to inter-
action has long been a core challenge in both computer
vision and robotics. Recent efforts in visual world mod-
eling have primarily focused on learning predictive rep-
resentations either at the pixel level through video gener-
ation [39, 40] or in latent spaces through representation
learning [1, 17, 25]. While such approaches capture tem-
poral dependencies, they often lack explicit 3D grounding
and object-level motion prediction. In contrast, our work
develops an explicit 3D object trajectory model that op-
erates in SE(3) space. Instead of predicting future pixels
or abstract latent codes, our method explicitly models ob-
ject evolution in 6-DoF pose space, and unlike implicit lan-
guage conditioning [46], conditions explicitly on predicted
object geometry and past motion context, offering a phys-
ically grounded representation well-suited for integration
into robotic manipulation frameworks [4, 26].

3. Method

We aim to learn a forward dynamics model that predicts fu-
ture 3D poses of rigid objects from passive human videos.
The task involves inferring plausible 6-DoF trajectories
conditioned on observed object geometry, local scene con-
text, and a short history of object motion. Since no dataset
exists for this setting, we construct a large-scale dataset
of 3D object trajectories from egocentric human activity
videos using off-the-shelf vision models (Sec. 3.2). We
then train a diffusion-based transformer model (Sec. 3.3)
that learns to sample diverse, physically consistent future
trajectories conditioned on visual and geometric context.

3.1. Overview

ObjectForesight tackles the problem of predicting future
3D object motion from short windows of egocentric video.
Given C observed frames and a prediction horizon of H , the
goal is to model a distribution over the next H future 6-DoF
poses of a manipulated object. All frames in the window are
expressed in the anchor-frame (first frame of the prediction
horizon) camera coordinates, allowing us to isolate true ob-
ject motion from ego-motion. In our default setting, we use
C=3 and H=8.

Formally, we observe images I1:C and their correspond-

ing object poses

P1:C = [p1, . . . ,pC ], pt ∈ SE(3),

where each pose token pt = [xt, yt, zt, rt,6D] con-
tains translation and a continuous 6D rotation representa-
tion [48]. Depth from the anchor frame is backprojected
to form a point cloud X, and normalized object bounding
boxes B1:P provide coarse spatial cues. The forecasting
target is the future sequence

Pfuture = [pta , . . . ,pta+H−1], ta = C+1.

ObjectForesight contributes both data and modeling:
(i) a large-scale pipeline that converts raw egocentric videos
into metrically grounded, anchor-frame–canonicalized 6-
DoF trajectories; and (ii) a geometry-aware diffusion model
that predicts future object motion from these trajectories.

Our predictive architecture combines a context-
conditioned geometry encoder over the anchor-frame
point cloud with a Diffusion Transformer (DiT) temporal
backbone. The encoder conditions point features on the
recent motion context (FiLM) and pools them into an
object-centric scene embedding zgeom, while the DiT mod-
els a distribution over future pose sequences conditioned
on zgeom and an explicit pose-token prefix.

The model operates in a depth-normalized pose space
for stability, and uses a cosine noise schedule with v-
parameterized denoising. At inference, DDIM sampling
produces smooth, diverse, and physically coherent 3D tra-
jectories.

3.2. Data Curation: From Egocentric Video to 3D
6-DoF Object Trajectories

Our curation pipeline converts in-the-wild egocentric
videos into clean, metrically grounded trajectories of hand-
manipulated objects (Fig. 2). Starting from EPIC-Kitchens
action segments, we apply a sequence of automatic ex-
traction and quality gates to recover temporally coherent
6-DoF poses. We summarize the key stages below.

Action segment prefiltering. We begin from annotated
single-activity segments and discard clips longer than
10 seconds to limit drift and ensure short, interaction-
centric windows.

Hand–object discovery with EgoHOS. For each remain-
ing clip, we run EgoHOS [47] to segment hands and
candidate manipulated objects frame-wise. Frames without
hands or without any object hypotheses are removed.
This yields per-frame masks for (i) active hand(s) and (ii)
plausible manipulated objects.

Robust object masks with temporal consensus. We
initialize SAM2 [35] using point prompts derived from
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Scene point cloud with monocular 
depth estimation

Coarse Hand-Object Detection with 
EgoHOS

Refined SAM2 mask (points on object and 
negative points on hand)

Object Mesh with TRELLIS (showing 
multiple views)

RGB Video Clip
Object Segmentation, Monocular Depth Estimation, 3D Mesh Reconstruction Object 6D pose estimation with 

Foundation Pose 

Figure 2. Data curation pipeline from egocentric video to 3D object trajectories. Starting from EPIC-Kitchens action segments, we de-
tect hands and objects, refine masks, and filter for clear manipulations. We then reconstruct an object mesh, recover metric depth and camera
geometry, and do 6-DoF pose estimation and tracking. Sliding windows over these tracks yield short, clean, anchor-frame–canonicalized
6-DoF trajectories used to train ObjectForesight.

EgoHOS masks and propagate a single object instance
through the clip. Positive prompts come from the interior of
the EgoHOS object mask; negative prompts are drawn from
the hand mask, the other-hand object (if present), and a thin
ring around the object boundary. To mitigate occasional
EgoHOS failures, we form temporal consensus prompts,
intersections of masks over a small temporal window,
which bias SAM2 toward temporally stable shapes. Newly
proposed SAM2 masks must have low IoU with the active
tracks to prevent duplication. The result is a temporally
smooth, occlusion-resilient object mask sequence.

VLM gating for manipulation and view quality. We
apply a two-stage VLM-based filter using InternVL3 [49].
First, at the video level, we check whether the highlighted
object is actually moved by hand; static objects are dis-
carded. Second, at the frame level, we crop around the
object and evaluate visibility (no blur, limited occlusion).
Frames passing this test form the set of clean views.

Object 3D reconstruction from clean views. TREL-
LIS [43] reconstructs a 3D object mesh from clean views.
The mesh is not used during ObjectForesight training; it
only serves as a geometric template for model-based pose
estimation under occlusion.

Model-based 6-DoF pose with metric depth and amodal
masks. SpaTrackerV2 [45] provides metric depth and
camera geometry. We use Diffusion-VAS [6] to complete
amodal object masks. Pose initialization and tracking use
FoundationPose [41] with three modifications for egocen-

tric video:

(i) Metric scale estimation. TRELLIS meshes lack scale;
we estimate scale by comparing masked depth points to
mesh radii across neighboring frames (robust weighted me-
dian), then refine via depth–silhouette alignment.

(ii) Multi-view initialization. We pick up to five clean
views, run FoundationPose initialization, and refine each
using depth alignment and silhouette consistency. We
choose the best by FoundationPose score, with an IoU-
based override. Low-IoU cases are discarded.

(iii) Bidirectional tracking with re-registration. From the
best initialization we track forward and backward. If pro-
jection IoU drops below 0.1, we trigger local re-registration
using the current mask. This produces temporally coherent
pose tracks with explicit re-registration events.

Trajectory slicing and final quality control. We slide
a window of length C+H along each track. A window
is kept if it lies within a single registration segment and
maintains stable projection IoU (no drop > 0.1). All poses
are re-expressed in the anchor-frame camera coordinates to
remove ego-motion.

Outcome. This automatic pipeline enforces (i) manipula-
tion validity (VLM gating), (ii) mask fidelity (SAM2 with
temporal consensus and amodal completion), and (iii) met-
ric, temporally coherent poses (FoundationPose with depth,
geometry, and re-registration). The result is a large collec-
tion of short, clean, object-centric trajectories suitable for
training multi-modal 3D dynamics models.
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Figure 3. Model architecture. Given past pose tokens and their normalized bounding boxes, we summarize motion context with anchor-
query attention and use it to guide object-centric pooling in a PointTransformerV3 encoder, producing a geometry-aware scene embedding.
A diffusion transformer (DiT, AdaLN-Zero) then denoises future depth-normalized pose tokens, conditioned on the scene embedding and
an explicit prefix of past pose tokens. This design allows ObjectForesight to generate diverse, physically coherent, and temporally smooth
3D motion predictions.

3.3. Predicting Future Trajectories in 3D
Our forecasting model learns to generate diverse and phys-
ically coherent future pose sequences conditioned on the
current geometric and motion context. It combines a
geometry-aware encoder with a diffusion-based transformer
operating on object-centric, depth-normalized 9D pose to-
kens. An outline of the model is depicted in Fig. 3.

Scene and Context Encoding. Given an anchor-frame
point cloud X ∈ RN×3, conditioning pose tokens P1:ta ∈
Rta×9, and corresponding normalized bounding boxes
B1:ta ∈ Rta×4, our goal is to construct a compact represen-
tation that summarizes both the recent motion and the 3D
scene structure. Here N is the number of points sampled
from the anchor-frame depth map. We use C pre-anchor
context frames, so the anchor index is ta = C+1.

For each frame k in the conditioning sequence, we con-
catenate the 9D pose token and 4D box into a 13D vec-
tor and project it into a D-dimensional context space. We
then pool the conditioning sequence with attention: the an-
chor token queries all conditioning tokens, and we add a
sinusoidal embedding of the relative time to the anchor
with a learnable scale. This yields a single context vector
ctx ∈ RD.

We feed the point cloud X into a PointTransformerV3
encoder [42]. Each point is represented by its anchor-
camera coordinates and its coordinates in the estimated an-
chor object frame, enabling object-centric reasoning. We
also provide the encoder with ctx which conditions the
point cloud features on it using feature-wise linear modula-
tion (FiLM) [34]. We then pool point features into a global
scene embedding zgeom ∈ R512 using an object-centric at-
tention head that matches point features to a query derived
from ctx and biases weights toward points near the object.
zgeom is then used as a conditioning signal, injected using

AdaLN-Zero [33] inside the DiT blocks.

Tokenization of Pose Sequences. We operate on object-
centric pose tokens expressed in the anchor-frame camera
coordinates. Each pose pt = [xt, yt, zt, rt,6D] is reparame-
terized into a depth-normalized token:

yt = [ut, vt, st, rt,6D], ut =
xt

zt
, vt =

yt

zt
, st = log zt,

which reduces the dynamic range of translation and im-
proves numerical stability in egocentric perspectives. For
the future horizon of length H , we form Yfuture =
[yta , . . . ,yta+H−1]. We then apply channel-wise standard-
ization using statistics (µ,σ) ∈ R9 estimated over the first
training batches (and fixed thereafter).

We apply the same depth reparameterization and stan-
dardization to the conditioning poses, yielding normalized
context tokens P̃1:ta . These tokens are embedded and
prepended as a prefix to the future sequence inside the trans-
former, giving the DiT access to the full conditioning his-
tory while B1:ta contributes to the pooled context vector
ctx.

Forward Diffusion Process and Cosine Schedule. Let
Ỹ0 ∈ RH×9 be the clean normalized future sequence for
the batch. Following the standard diffusion framework, we
define a forward noising process with a cosine β-schedule
and sample timesteps uniformly from {0, . . . , T−1} (we
use T=1000). The DiT processes the noised sequence Ỹt

as a length-H sequence of 9D tokens, conditioned on the
timestep embedding, the geometric embedding zgeom, and
the normalized context tokens P̃1:ta .

Tokens are embedded into a latent sequence and aug-
mented with learned absolute positions, a token-type em-
bedding (context vs. future), and a signed anchor-relative
time embedding. Conditioning is injected via AdaLN-Zero
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Figure 4. Qualitative results from ObjectForesight. Given only the past context and the anchor-frame geometry, ObjectForesight
generates physically plausible and semantically meaningful 6-DoF trajectories of manipulated objects. For each sequence, we overlay 8
predicted poses on the last observed frame, illustrating both (i) the projected coordinate axes and (ii) the transformed object mesh, with
increasing blur indicating further steps into the future. The images are zoomed in for clarity, and the arrows indicate the direction of motion.
These results and additional results on HOT3D-clips are best viewed as videos in the website objectforesight.github.io

where a lightweight MLP combines timestep and scene
embeddings into per-layer normalization modulations and
gated residuals within each transformer block.

v-Parameterization with p2 Weighting. Instead of pre-
dicting the noise ϵ directly, we adopt v-parameterization,
which stabilizes training across timesteps. We train with
an SNR-weighted regression loss (p2 reweighting [36]) and
additionally apply horizon-aware weighting that linearly in-
creases toward later forecast steps (from 1 to 3 across the
horizon). During training and DDIM sampling, we recon-
struct ˆ̃Y0 from the predicted vθ using the standard closed-
form relation.

Denormalization and Pose Decoding. To obtain physi-
cal 9D pose tokens from the network outputs, we invert both
the standardization and the depth reparameterization. First,

Ŷ0 = ˆ̃Y0 ⊙ σ + µ, (1)

where ⊙ denotes elementwise multiplication. Each de-
coded token ŷt = [ût, v̂t, ŝt, r̂t,6D] is then mapped back
to (x̂t, ŷt, ẑt) via

ẑt = exp(ŝt), x̂t = ûtẑt, ŷt = v̂tẑt.

The full 9D pose token is then [x̂t, ŷt, ẑt, r̂t,6D].

SE(3) Losses. Since we predict poses in anchor-frame
camera coordinates, we can supervise the decoded SE(3)
trajectory directly. For each future step k, we convert the
predicted 6D rotation to R̂k ∈ SO(3) and measure trans-
lation error ∥tk − t̂k∥2 and rotation error via the SO(3)
geodesic angle dgeo(Rk, R̂k). We average both errors over

the horizon (converting degrees to radians) and use

Laux = E
[
ᾱt

(
λR dgeo + λtrans etrans

)]
,

where dgeo is the horizon-averaged geodesic rotation error
(in radians) and etrans is the horizon-averaged translation
error. The expectation is over training samples and sampled
diffusion steps, λR and λtrans balance rotation and trans-
lation, and ᾱt downweights very noisy steps where ˆ̃Y0 re-
construction is less reliable. We regularize dynamics with
SE(3) velocity and acceleration losses on increments (also
weighted by ᾱt): let ∆tk = tk+1 − tk, ∆Rk = R⊤

k Rk+1,
and ∆2 denotes second differences, then

Lvel = ∥∆tk −∆t̂k∥22 + dgeo(∆Rk,∆R̂k)2,

Lacc = ∥∆2tk −∆2t̂k∥22 + dgeo(∆2Rk,∆2R̂k)2

where · averages over valid timesteps k. A small depth-floor
penalty is also applied to discourage degenerate solutions
with extremely small depth:

Lzmin
= 0.01ReLU(zmin − ẑt).

Sampling and Total Objective. At inference time we
start from Gaussian noise and perform deterministic DDIM
sampling with S denoising steps (we use S=50). We use S
evenly spaced timesteps from the training schedule and iter-
atively denoise under the same conditioning (zgeom, P̃1:ta).

At each step we predict vθ, reconstruct ˆ̃Y0, and apply the
DDIM update to produce P̂future in the anchor frame.

The complete training objective combines the main dif-
fusion loss Lv with pose-space supervision and smoothness
terms:

Ltotal = Lv + Laux + Lzmin
+ λvel Lvel + λacc Lacc.
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Figure 5. Visual comparison between generations from ObjectForesight and Luma AI Ray3. Both methods are conditioned on
the same three-frame context. ObjectForesight generates future 3D object poses, while Luma AI Ray3 generates a short video. We
then apply our pose extraction pipeline to the generated video. Under this procedure, ObjectForesight yields temporally consistent
pose trajectories, whereas poses extracted from Ray3 generations are less consistent. Results are best viewed as videos in the website
objectforesight.github.io

We use λR = 2.0, λtrans = 20.0, λvel = 0.5, and
λacc = 0.1. The SE(3) auxiliary loss and the smoothness
losses are computed on the decoded pose sequence (after
denormalization and depth decoding), while Lv is applied
in the normalized token space.

Why Diffusion? Diffusion-based modeling is well suited
to 3D interaction dynamics. Given identical 3D condition-
ing, multiple future motions can be plausible (e.g., a mug
can be picked up, slid, or rotated). Our DiT captures this in-
herently one-to-many nature while encouraging temporally
smooth, physically plausible trajectories. In our experi-
ments, it yields more plausiblegeometrically consistent pre-
dictions than an autoregressive transformer baseline trained
on the same object-centric representation.

Summary. By combining an object-centric 3D scene en-
coder with an AdaLN-Zero conditioned diffusion trans-
former over depth-normalized pose tokens, ObjectFore-
sight learns a rich conditional distribution over future object
motion. The architecture explicitly leverages metric geom-
etry, camera coordinates, and pose history to generate accu-
rate, diverse, and physically plausible 6-DoF trajectories in
real-world egocentric scenes.

4. Experiments

Our experiments aim to answer three questions:
1. Is the curated dataset of object-centric 3D trajectories re-

liable and diverse?
2. Are the predicted future object motions plausible and

physically consistent?
3. Does the model generalize beyond the distribution of cu-

rated scenes?

4.1. Curated EpicK Dataset Details
We curate a large-scale collection of object-centric 3D mo-
tion trajectories from egocentric videos using an automated
eight-stage pipeline (Table 2). From 76K EPIC-Kitchens
action segments, we retain 72K short clips (≤10s) with vis-
ible hands to ensure the presence of interactions. Object
masks and 2D tracks are obtained using SAM2, yielding
229K raw tracks before quality filtering reduces them to
112K. Using TRELLIS, we reconstruct 71K object meshes
and obtain 59K pose-aligned tracks. Sliding-window ex-
traction produces 3.06M raw (3+8)-step 3D trajectories,
which are further filtered to 2.07M high-quality trajectories
used for training and evaluation.

4.2. HOT3D-Clips
We also train and evaluate ObjectForesight on HOT3D-
Clips [2] to validate that the model can learn future 3D mo-
tion from cleaner trajectories. For the HOT3D experiments,
we skip frames to convert the clips to 6 fps and then extract
the same (C+H)-frame windows used in our main setting.

4.3. Baselines, Ablations, and Metrics
We evaluate three categories of models:
1. ObjectForesight-DiT: our diffusion transformer for

multimodal trajectory prediction
2. ObjectForesight-AR: an autoregressive transformer

without diffusion
3. Video-generation baseline: an off-the-shelf future

video generator (Luma AI Ray3)
For the video-generation baseline, we feed three context

frames and let the model synthesize a short future clip. Be-
cause running this pipeline is computationally expensive,
we apply it to 20 randomly selected videos with clear object
visibility, recover 6-DoF motion from the generated frames
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ADE ↓ FDE ↓ DES ↓ ARE ↓ FRE ↓ RES ↓

Epic-Kitchens
ObjectForesight-DiT 0.019 0.035 0.005 7.98° 13.93° 1.86°
ObjectForesight-AR 0.067 0.074 0.002 9.48° 12.58° 0.93°

vs. Video Generation
ObjectForesight-DiT 0.029 0.059 0.008 7.29° 13.98° 1.77°
Luma AI Ray3 0.084 0.149 0.020 12.86° 20.90° 2.62°

HOT3D-Clips
ObjectForesight-DiT 0.026 0.042 0.001 7.14° 11.44° 1.50°
ObjectForesight-AR 0.055 0.082 0.007 9.80° 14.95° 1.55°

Table 1. Quantitative evaluation of 8-step 3D trajectory forecasting on Epic-Kitchens and HOT3D-Clips. Lower values indicate
better performance. Our diffusion-based model (ObjectForesight-DiT) either outperforms or is comparable to the autoregressive variant
(ObjectForesight-AR) across translation and rotation metrics on both datasets. In the video generation comparison on Epic-Kitchens,
ObjectForesight-DiT also substantially outperforms a state-of-the-art video generation baseline (Luma AI Ray3), highlighting the benefits
of explicit 3D reasoning compared to image-space synthesis.

Step Name Number

Action Segments 76,885 vids
Selected Vids (hands, ≤ 10s) 72,046 vids
SAM2 Tracks 229,102 tracks
Filtered Tracks 112,057 tracks
TRELLIS Models 71,296 models
Objects with Pose Tracks 59,174 tracks
Pre-Filtering Trajectories 3,065,568 trajectories
Post-Filtering Trajectories 2,073,109 trajectories

Table 2. Statistics of the curated dataset of 3D object trajectories
from human videos of daily activities. We will release this dataset
for the community.

using our curation pipeline, and compute the same trajec-
tory metrics.

We report ADE (mean Euclidean error across all
timesteps), FDE (final-step Euclidean error), DES (slope
of the per-timestep Euclidean distance error), ARE (aver-
age rotation error), FRE (final rotation error), and RES
(slope of the per-timestep rotation error). Additional ab-
lations, such as reducing history frames (which increases
uncertainty and prediction diversity), are included in the ap-
pendix due to space constraints.

4.4. Qualitative Results

Fig. 4 shows that ObjectForesight predicts smooth, physi-
cally consistent 6-DoF trajectories that respect scene geom-
etry across a wide range of manipulation scenarios. The
model captures realistic interactions, including lifting, ro-
tating, and placing objects, and generates coherent futures
in terms of 3D object motion conditioned on the observed
context. Fig. 5 presents trajectories recovered from videos
generated by Luma AI Ray3. Although these videos exhibit
appearance artifacts and provide no explicit 3D constraints,

our curation pipeline can still recover approximate object
motion from the rendered frames. The recovered trajec-
tories, however, are typically less stable than ObjectFore-
sight’s direct predictions, underscoring the advantage of ex-
plicitly modeling 3D dynamics rather than inferring them
post-hoc from generated videos.

4.5. Quantitative Results
Table 1 reports performance across all 6-DoF trajectory
metrics on Epic-Kitchens and HOT3D-Clips. On Epic-
Kitchens, ObjectForesight-DiT achieves the best overall
translation and average rotation accuracy (e.g., over 3×
lower ADE than ObjectForesight-AR), while the autore-
gressive variant shows slightly better error-growth trends
on a subset of slope/final-rotation metrics. On HOT3D-
Clips, ObjectForesight-DiT outperforms ObjectForesight-
AR across all metrics, indicating stronger generalization be-
yond Epic-Kitchens. In the video-generation comparison,
ObjectForesight-DiT substantially outperforms Ray3, rein-
forcing the benefit of predicting motion directly in SE(3)
rather than inferring it from synthesized frames.

5. Discussion
We introduce the task of forecasting future 3D object
motion directly from passive human videos, framing ob-
ject dynamics prediction as an object-centric, SE(3) tra-
jectory modeling problem grounded in realistic manipula-
tion behavior. Our large-scale dataset—constructed through
automated segmentation, tracking, monocular reconstruc-
tion, and pose alignment—provides millions of metrically
grounded trajectories that capture how objects move across
diverse everyday interactions. Building on this founda-
tion, ObjectForesight integrates monocular geometry, re-
cent motion, and local scene structure within a diffusion-
based transformer, enabling multimodal prediction of phys-
ically consistent futures. Experiments demonstrate strong
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performance across translation, rotation, and temporal sta-
bility metrics, with ObjectForesight outperforming auto-
regressive and video-generation baselines and generalizing
to new objects and environments.

While the current formulation focuses primarily on rigid
objects and short-horizon predictions, it suggests several
promising directions for future research. One limitation is
the rigidity assumption, which restricts the model’s ability
to capture interactions involving flexible, articulated, or de-
formable objects. Future work can extend our object-centric
representation to more expressive parameterizations—such
as articulated kinematic models, learned deformation fields,
or neural implicit surfaces—to handle richer categories of
everyday objects. Overall, our results establish a foun-
dation for scalable, object-centric 3D dynamics modeling
and point toward richer, more general predictive models of
physical interaction.
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Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2:
Segment anything in images and videos. arXiv preprint
arXiv:2408.00714, 2024. 2, 3

[36] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10684–10695, 2022. 6

[37] Yu Rong, Takaaki Shiratori, and Hanbyul Joo. Frankmo-
cap: Fast monocular 3d hand and body motion capture by
regression and integration. arXiv preprint arXiv:2008.08324,
2020. 2

[38] Dandan Shan, Jiaqi Geng, Michelle Shu, and David Fouhey.
Understanding human hands in contact at internet scale. In
CVPR, 2020. 2

[39] Ruben Villegas, Jimei Yang, Seunghoon Hong, Xunyu
Lin, and Honglak Lee. Decomposing motion and con-
tent for natural video sequence prediction. arXiv preprint
arXiv:1706.08033, 2017. 3

[40] Jacob Walker, Carl Doersch, Abhinav Gupta, and Martial
Hebert. An uncertain future: Forecasting from static images
using variational autoencoders. In European conference on
computer vision, pages 835–851. Springer, 2016. 3

[41] Bowen Wen, Wei Yang, Jan Kautz, and Stanley T. Birchfield.
Foundationpose: Unified 6d pose estimation and tracking of
novel objects. 2024 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 17868–17879,
2023. 4

[42] Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xi-
hui Liu, Yu Qiao, Wanli Ouyang, Tong He, and Hengshuang
Zhao. Point transformer v3: Simpler, faster, stronger. In
CVPR, 2024. 2, 5

[43] Jianfeng Xiang, Zelong Lv, Sicheng Xu, Yu Deng, Ruicheng
Wang, Bowen Zhang, Dong Chen, Xin Tong, and Jiaolong
Yang. Structured 3d latents for scalable and versatile 3d gen-
eration. In CVPR, 2025. 2, 4

[44] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and
Dieter Fox. Posecnn: A convolutional neural network for
6d object pose estimation in cluttered scenes. arXiv, 2018. 2

[45] Yuxi Xiao, Jianyuan Wang, Nan Xue, Nikita Karaev, Yuri
Makarov, Bingyi Kang, Xing Zhu, Hujun Bao, Yujun Shen,
and Xiaowei Zhou. Spatialtrackerv2: Advancing 3d point
tracking with explicit camera motion. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 6726–6737, 2025. 2, 4

[46] Tomoya Yoshida, Shuhei Kurita, Taichi Nishimura, and
Shinsuke Mori. Generating 6dof object manipulation tra-
jectories from action description in egocentric vision. In
Proceedings of the Computer Vision and Pattern Recognition
Conference, pages 17370–17382, 2025. 3

[47] Lingzhi Zhang, Shenghao Zhou, Simon Stent, and Jianbo
Shi. Fine-grained egocentric hand-object segmentation:
Dataset, model, and applications. In European Conference
on Computer Vision, pages 127–145. Springer, 2022. 2, 3

[48] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao
Li. On the continuity of rotation representations in neural
networks. 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 5738–5746, 2018. 3

[49] Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shen-
glong Ye, Lixin Gu, Hao Tian, Yuchen Duan, Weijie Su,
Jie Shao, et al. Internvl3: Exploring advanced training and
test-time recipes for open-source multimodal models. arXiv
preprint arXiv:2504.10479, 2025. 4

[50] Christian Zimmermann and Thomas Brox. Learning to esti-
mate 3d hand pose from single rgb images. In CVPR, 2017.
2

10



A. Additional Details of the Data Curation
Pipeline

We elaborate on the stages of the data curation pipeline
summarized in Sec. 3.2, focusing on the heuristics, con-
straints, and cross-stage checks that improve data quality
for pose trajectories.

A.1. Presence Filtering and Initialization
To mitigate false segmentations from EgoHOS, we aggre-
gate interaction signals over each clip. We apply run-length
smoothing to binary hand/object presence indicators using
a threshold proportional to the clip length. This process
fills brief detection gaps and eliminates false short-duration
positives. The resulting smoothed signals serve two criti-
cal functions: they act as execution gates to ensure down-
stream modules run only when targets are reliably present,
and they guide the SAM initialization towards temporally
stable windows, reducing error propagation without intro-
ducing long-term drift.

A.2. Robust 2D Tracking
We augment the standard SAM2 tracking pipeline with a
multi-stage regularization protocol that promotes temporal
stability and suppresses duplicate object instances.
Point Sampling Strategy. To initialize and guide the
model, we employ a robust sampling strategy. Positive
points are sampled from the segmented object mask. To
prevent mask leakage into the surrounding context, we ex-
plicitly sample negative points from three regions: detected
hand masks, other object masks (if present), and a dilated
background band surrounding the target object’s mask.
Temporal Stability and Consensus. To mitigate per-frame
segmentation noise, we construct a short-window consensus
mask. When individual frame proposals are noisy, this con-
sensus serves as a high-confidence positive prior. Further-
more, we apply mild morphological opening and closing to
eliminate isolated speckles and smooth boundaries.
Trajectory Linking and De-duplication. We associate ob-
ject components across frames using greedy Intersection
over Union (IoU) matching. To handle brief occlusions or
detection failures, we permit a small gap tolerance in the
temporal sequence. Tracks that fail to meet a minimum
length requirement are discarded as noise. Simultaneously,
we perform de-duplication within each video clip. If a new
object proposal overlaps with an existing active track above
a defined IoU threshold within a short temporal window, it
is rejected. This ensures that the system maintains unique,
distinct identifiers for each object instance.
Initialization. When multiple seeds are available, we pri-
oritize candidates with the largest temporally stable area.
Propagation is executed bidirectionally to maximize track-
ing duration.

A.3. Quality Filtering and Selection
We implement a two-stage filtering protocol to ensure only
viable candidates reach the reconstruction stage.
Manipulation Gate. We employ a strict video-level gate
using InternVL3 to filter out static or irrelevant objects.
This module operates on object-highlighted visual sum-
maries derived from the input track, rather than raw frames.
Only tracks exhibiting active manipulation are retained.
Clean-View Selection. For the remaining valid tracks, we
categorize frames into Partial/Invalid (occluded, blurred,
or insufficient resolution) and Clean (unambiguous shape).
Only clean frames are selected for geometry estimation. In-
put crops include a context margin to preserve local seman-
tic cues.

A.4. Reconstruction Preparation
We prepare the data for 3D reconstruction through a se-
quence of filtering and completion steps.
Frame Selection and Background Removal. For the
TRELLIS model, we select optimal ”clean” frames based
on foreground area size, excluding statistical outliers to
maximize geometric consistency. Background clutter is
masked out to isolate the object on a neutral canvas, en-
hancing texture and shape recovery.
Amodal Mask Generation. Separately, we use Diffusion-
VAS to generate amodal masks. The segmentation masks
contain holes or cutouts wherever the object is blocked by
hands or other interactions. Diffusion-VAS corrects this by
estimating the complete, physical shape of the object, filling
in the missing regions. This ensures that we recover the
full object silhouette, which is essential for accurate pose
estimation and tracking in later steps of the pipeline.

A.5. Pose Estimation and Tracking
We adapt FoundationPose to recover robust 6DoF ob-
ject trajectories, utilizing camera intrinsics, extrinsics, and
dense depth maps provided by SpaTrackerV2. We add the
following specific safeguards:
Scale Estimation and Locking. To handle monocular scale
ambiguity, we lock the mesh diameter after the initial depth-
to-mesh alignment. Subsequent residuals are normalized by
this fixed diameter to ensure consistent error scoring across
objects of varying sizes.
Initialization Stress-Test. To prevent tracking failures
from the start, we do multi-view initialization of ob-
ject pose. Each potential initial frame undergoes a brief
“refine-and-validate” optimization loop that jointly mini-
mizes depth alignment error and maximizes silhouette con-
sistency. Initial views yielding high depth alignment errors
or silhouette inconsistencies are rejected.
Bidirectional Tracking and Re-registration. Tracking
proceeds bidirectionally (forward and backward) from the
optimal seed, with the estimator explicitly re-centered at the
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Table 3. Translation Error Analysis. Comparison of ADE and FDE across models trained with different horizon lengths (H). Lower is
better. Missing values (-) indicate the model cannot predict to that horizon.

Eval @ H = 4 Eval @ H = 8 Eval @ H = 16 Eval @ H = 32

Train H ADE FDE ADE FDE ADE FDE ADE FDE

4 0.016 0.023 - - - - - -
8 0.009 0.015 0.017 0.030 - - - -

16 0.015 0.020 0.022 0.034 0.034 0.055 - -
32 0.018 0.022 0.023 0.031 0.032 0.049 0.050 0.083

Table 4. Rotation Error Analysis. Comparison of ARE and FRE across models trained with different horizon lengths (H). Lower is
better.

Eval @ H = 4 Eval @ H = 8 Eval @ H = 16 Eval @ H = 32

Train H ARE ↓ FRE ↓ ARE ↓ FRE ↓ ARE ↓ FRE ↓ ARE ↓ FRE ↓

4 4.81° 7.41° - - - - - -
8 3.50° 6.05° 6.53° 11.47° - - - -
16 4.63° 6.98° 7.39° 11.82° 11.77° 18.85° - -
32 5.95° 7.45° 7.87° 11.13° 11.37° 17.77° 18.07° 29.77°

anchor frame before each pass. To detect and correct drift,
we compute a suite of complementary consistency terms at
every step:
• Silhouette Metrics: We monitor Intersection over Union

(IoU) with specific penalties for overflow (mesh projec-
tion exceeding the mask) and underfill (mesh projection
failing to cover the mask).

• Geometric Residuals: We track the error between the
rendered mesh depth and the observed sensor depth.

• Motion Monitors: We apply conservative thresholds on
rotation and translation deltas to flag physically implausi-
ble jumps.

Re-registration is triggered by compounded evidence from
these metrics, allowing the system to curb drift under heavy
occlusions or rapid egocentric motion.

B. Ablation Studies
In this section, we conduct a series of ablation studies
to evaluate the contribution of different values of context
length (C) and prediction horizon (H) and validate the de-
sign choices of our proposed framework.

B.1. Ablation Study on Context Length
To determine the optimal temporal receptive field for our
method, we conducted an ablation study on the number of
input context frames C. We evaluated the model’s perfor-
mance by varying C ∈ {1, 2, 3, 5, 10} while maintaining a
fixed prediction horizon of H = 8. To ensure a consistent
evaluation benchmark across all configurations, the valida-
tion set was constructed using the maximum context length
(C = 10). For models trained with shorter contexts, we

trimmed the input sequences accordingly, ensuring that all
models predicted the exact same target frames based on the
appropriate historical window. The results of this experi-
ment are summarized in Table 5.

Table 5. Ablation studies on the number of context frames.
We evaluate the impact of context length C on pose prediction
accuracy with a fixed prediction horizon of H = 8.

C ADE ↓ FDE ↓ ARE ↓ FRE ↓

1 0.026 0.038 7.97° 12.36°
2 0.021 0.033 7.61° 12.14°
3 0.018 0.032 7.03° 12.42°
5 0.025 0.035 7.69° 11.68°
10 0.027 0.038 8.09° 12.21°

As illustrated in Table 5, we observe that increasing
the context information initially improves prediction ac-
curacy. The performance improves significantly as C in-
creases from 1 to 3, with C = 3 achieving the lowest error
rates across the majority of metrics, including an ADE of
0.018 and an ARE of 7.03°. This suggests that a context
of three frames provides sufficient historical information to
effectively capture the object’s immediate trajectory and ro-
tational dynamics.

However, increasing the context length beyond this point
(C = 5 and C = 10) results in a performance degrada-
tion. For instance, at C = 10, the ADE regresses to 0.027,
and the ARE increases to 8.09°. We attribute this decline
to two primary factors. First, longer context sequences are
more susceptible to accumulated noise, which can distract
the model from the most relevant recent motion cues. Sec-
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ond, an excessively long history may cause the model to
overfit to past trajectories, hindering its ability to general-
ize to dynamic changes in pose movements or sudden shifts
in direction. Consequently, we adopt C = 3 as the default
setting for our main method.

B.2. Ablation Study on Prediction Horizon
We further analyze the impact of the prediction horizon H
by training separate models with H ∈ {4, 8, 16, 32} and a
fixed input context length C = 3. To ensure a fair com-
parison, the validation set is constructed using the maxi-
mum horizon (H = 32); for models with shorter output
capabilities, we crop the ground truth sequences to match
their respective prediction lengths (4, 8, or 16 frames). This
setup allows us to evaluate how training on different tempo-
ral lengths affects performance at various evaluation hori-
zons.

Table 3 and Table 4 summarize the results for translation
(ADE/FDE) and rotation (ARE/FRE) errors, respectively.
Columns indicate the evaluation horizon used, while rows
represent the model’s training configuration.

The results highlight a clear trade-off between short-term
precision and long-term capability. Interestingly, the model
trained with H = 8 outperforms the model trained with
H = 4 when evaluated at the shorter horizon of H = 4
(e.g., ADE decreases from 0.0161 to 0.0095). This sug-
gests that training on a slightly longer horizon encourages
the network to learn more robust motion dynamics, acting
as a form of regularization that benefits short-term accuracy.

However, blindly increasing the training horizon is not
always beneficial. The model trained with H = 32 ex-
hibits significantly higher error rates at shorter horizons
(H = 4, 8) compared to the H = 8 model. This degradation
likely stems from the optimization difficulty; the loss func-
tion for H = 32 is averaged over a long sequence where
errors naturally accumulate, potentially diluting the gradi-
ents for earlier frames. Conversely, for long-term predic-
tions (H = 16 and H = 32), the model explicitly trained
on the larger horizon (H = 32) yields the superior perfor-
mance. This is expected, as models trained with shorter
horizons optimize for immediate accuracy and lack the su-
pervisory signal required to maintain trajectory consistency
over extended periods. Without the long-term loss compo-
nent, these models suffer from severe error accumulation
(drift) when extrapolating beyond their training window.
The H = 32 model, by contrast, learns to model global
temporal dependencies, effectively trading off some short-
term precision for long-term stability.
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